Closed and *σ***-Finite Measures on the Orthogonal Projections**

Marjan Matvejchuk1

Received May 23, 2004; accepted May 28, 2004

We characterize the connection between closed and σ -finite measures on orthogonal projections of von Neumann algebras.

Let A be a von Neumann algebra acting in a separable complex Hilbert space *H* and let A^{pr} be the set of all orthogonal projections (=idempotents) from A. A subset $M \subseteq A^{pr}$ is said to be *ideal of projections* if:

- a) $p \le q$ where $p \in A^{pr}$, $q \in M \Rightarrow p \in M$;
- b) $p, q \in \mathcal{M}$ and $||pq|| < 1 \Rightarrow p \vee q \in \mathcal{M}$; c) $\sup\{p : p \in \mathcal{M}\} = I$.

Put $\mathcal{M}_p := \{q : q \in \mathcal{M}, q \leq p\}, \forall p \in \mathcal{A}^{pr}$. Note that \mathcal{A}^{pr} is the ideal of projections, $0 \in \mathcal{M}_p$, $\forall p$, and the conditions 1), 2) are fulfilled on \mathcal{M}_p .

A function $\mu : \mathcal{M} \to [0, +\infty]$ is said to be a measure if $\mu(e) = \sum_{i=1}^{n} \mu(e_i)$ for any representation $e = \sum e_i$. Let $\mu_1 : \mathcal{M}_1 \to [0, +\infty]$ and $\mu_2 : \mathcal{M}_2 \to [0, +\infty]$ be measures. The measure μ_2 is said to be the *continuation* of μ_1 if $\mathcal{M}_1 \subset \mathcal{M}_2$ and $\mu_1(p) = \mu_2(p)$, $\forall p \in \mathcal{M}_1$. A projection $p \in \mathcal{A}^{pr}$ is said to be: *projection of finite* μ -measure if $\sup\{q \in M_p\} = p$ and $\sup\{\mu(q) : q \in M_p\} < +\infty$; *hereditary projection of finite* μ -measure if q is the projection of finite μ - measure for any $q \in A^{\text{pr}}, q \leq p$.

The measure μ is said to be: *finite* if $\mu(p) < \infty$, $\forall p$; *infinite* if there exists $p \in \mathcal{M}$ such that $\mu(p) = +\infty$; *fully finite* if $\sup\{\mu(p) : p \in \mathcal{M}\} < +\infty$; *closed* if μ is finite and $p \in \mathcal{M}$ if p is the hereditary projection of finite μ -measure; *σ*-*finite* if $M = A^{pr}$ and there exists a sequence $\{p_n\} \subset A^{pr}$ such that $p_n \nearrow I$ and $\mu(p_n) < +\infty, \forall n$.

The following Proposition will be needed in Theorem 3.

¹ Novorossiisk University, Novorossiisk, Geroev Desantnikov Str., 87, 353922 Russia.

 2 To whom correspondence should be addressed at; e-mail: svozil@tuwien.ac.at.

Proposition 1. *Let* A *be a finite von Neumann algebra acting in the separable Hilbert space H* and let $M \subseteq A^{pr}$ *be the ideal of projections. Then there exists a sequence* $\{e_n\} \subset \mathcal{M}$ *such that* $e_n \nearrow I$.

Proof: Let τ be a faithful normal finite trace on \mathcal{A}^+ . The proof consists of several steps.

- i) Fix $\epsilon > 0$. Let us prove that there exists $p_{\epsilon} \in M$ such that $\tau(p_{\epsilon}) > \tau(I)$ ϵ . By b) and by separability of *H*, there exists a sequence $\{q_n\}_{1}^{\infty} \subset \mathcal{M}$ with $\sup\{q_n\} = I$.
	- 1) Put $f_1 := q_1$.
	- 2) Let $q_2 f_1 q_2 = \int_0^{1+} \lambda \, \mathrm{d} \mathrm{e}_{\lambda}^{(2)}$ be the spectral decomposition of $q_2 f_1 q_2$. Here $e_{\lambda}^{(2)}$ is the left continuous decomposition of identity. Fix $k \in N$. By the left continuous of $e_{\lambda}^{(2)}$, there exists $\beta \in (0, 1)$ such that $\tau(e_1^{(2)} - e_{\beta}^{(2)})$ $(\frac{1}{2})^{k+1}$. Put $q'_2 := q_2 \wedge e_{\beta}^{(2)}$. By 1), $q'_2 \in \mathcal{M}$. By the construction of *β*, $||q'_2 f_1|| \text{ ≤ } \beta$ (< 1). Hence $f_1 \lor q'_2 \text{ ≤ } q_1 \lor q_2$ and by b), $f_2 := f_1 \lor$ $q'_2 \in \mathcal{M}$ and $\tau(q_1 \vee q_2 - f_2) < (\frac{1}{2})^{k+1}$.
	- 3) Let $q_3 f_2 q_3 = \int_0^{1+} \lambda \, \mathrm{d} \mathrm{e}_{\lambda}^{(3)}$ be the spectral decomposition of $q_3 f_2 q_3$. Let us choose *β* ∈ (0, 1) such that $τ(e_1^{(3)} - e_β^{(3)}) < (\frac{1}{2})^{k+2}$, again. Put *q'*₃ := $q_3 \wedge e_\beta^{(3)}$. By a), $q'_3 \in \mathcal{M}$. By the construction of β , we have $||q'_3 f_2|| \le \beta$ (*<* 1). Again by b), $f_3 := f_2 ∨ q'_3 ∈ M$. Thus

$$
f_3 \le f_2 \vee q_3 \le f_1 \vee q_2 \vee q_3 = q_1 \vee q_2 \vee q_3
$$

and

$$
\tau(f_2 \vee q_3 - f_2 \vee q'_3) \le \left(\frac{1}{2}\right)^{k+2},
$$

$$
\times \tau(q_1 \vee g_2 \vee q_3 - f_2 \vee g_3) < \left(\frac{1}{2}\right)^{k+1}
$$

.

Therefore $\tau(q_1 \vee q_2 \vee q_3 - f_3) \leq (\frac{1}{2})^{k+1} + (\frac{1}{2})^{k+2}$.

Let us continue the process of construction of ${f_n}$ by the induction

with respect to *n*.

n). Let the projection $f_{n-1} \in M$ it was chosen. Let $q_n f_{n-1} q_n =$ n). Let the projection *f_{n−1}* ∈ *M* it was chosen. Let *q_n f_{n−1}q_n* = $\int_0^{1+} \lambda \, \text{d} \text{e}_\lambda^{(n)}$ be the spectral decomposition of *q_n f_{n−1}q_n*. Let us choose $\beta \in (0, 1)$ such that $\tau(e_1^{(n)} - e_\beta^{(n)}) < (\frac{1}{2})^{k+n-1}$. Put $q'_n := q_n \wedge e_\beta^{(n)}$. By a), $q'_n \in \mathcal{M}$. By the construction of β , we have $||q'_n f_{n-1}|| \leq \beta'(< 1)$. By b), $f_n := f_{n-1} \vee q'_n \in \mathcal{M}$. Thus

$$
f_n = f_{n-1} \vee q'_n \le \vee_1^{n-1} q_i \vee q_n = \vee_1^n q_i
$$

and

$$
\tau(\vee_1^n q_i - f_n) \le \left(\frac{1}{2}\right)^{k+1} + \cdots + \left(\frac{1}{2}\right)^{k+n-1} < \left(\frac{1}{2}\right)^k
$$

For the given $\epsilon > 0$ let us choose $m \in N$ such that $\tau(I - \vee_{1}^{m} q_{i}) < \frac{\epsilon}{2}$ and $k \in N$ such that $\frac{\epsilon}{2} > (\frac{1}{2})^k$ ($\geq \tau(\vee_1^m g_i - f_m)$). Then the projection $p_{\epsilon} := f_m$ is that in question.

ii) Now let $e_n := \wedge_{m \ge n} p_{2^{-m}}$. Then $e_n^{\perp} = \vee_{m \ge n} p_{2^{-m}}^{\perp}$ and $\tau(e_n^{\perp}) \le \sum_{m \ge n}$ $2^{-m} = 2^{-n+1}$. The sequence $\{e_n\}$ is valid.

Theorem 2. *Let* A *be a semifinite von Neumann algebra containing no direct summand of type* I_2 *acting in the separable Hilbert space and let* μ : $A^{pr} \rightarrow$ $[0, +\infty]$ *be the* σ *-finite infinite measure and* $\mathcal{M}_{\mu} := \{p \in \mathcal{A}^{pr} : \mu(p) < +\infty\}.$ *Then* M*^µ is the ideal of projections. If* A *is a finite von Neumann algebra then the restriction* $\mu_1 := \mu/M_\mu$ *is the closed measure.*

Proof:

1) Let us prove that \mathcal{M}_{μ} is the ideal of projections. It is clear that a) on \mathcal{M}_{μ} is fulfilled. Let $p, q \in M_\mu$ and $\|pq\| < 1$. It is sufficient to consider the case *p*, *q* when *p*, *q* are projections *in general position* in *H*, i.e.

$$
p \wedge q = (p \vee q - p) \wedge q = (p \vee q - q) \wedge p = 0.
$$
 (1)
By (1), $\overline{pqH} = pH$.

i) Let us suppose first that projections *p*, *q* are finite with respect to A. There exists a representation $q = q_1 + q_2 + q_3$ (if A is the continuous algebra then $q_3 = 0$) $q_1, q_2, q_3 \in \mathcal{M}$ such that the orthogonal projections p_i onto subspaces $\overline{p}q_iH$, $i = 1, 2, 3$ are mutually orthogonal and there exist the partial isometries $v_i \in A$, $i = 1$, 2, 3 such that q_iH are the initial subspaces and the final subspaces in $(q - q_i)H$. The von Neumann algebra A^i generated by p_i , q_i and v_i is direct integral of factors of type I_3 . By the construction, p_i , q_i , $v_i q_i v_i^* \in \mathcal{M}$. By Lemma (Lugovaja and Sherstnev, 1980), $\mu(p_i \vee q_i - p_i) < +\infty$ (and hence $\mu(p_i \vee q_i) < +\infty$) if \mathcal{A}^i is the type (Lugovaja and Sherstnev, 1980) factor. If $Aⁱ$ is the direct integral of factors, the proof of $\mu(p_i \vee q_i) < +\infty$ repeat of the proof of Lemma (Lugovaja and Sherstnev, 1980). Thus the inequality $\mu(p \lor q) = \mu(\sum_i p_i \lor q_i) < +\infty$ is proved. By Lemma 5 (Matvejchuk, 1981a),

$$
\mu(p \lor q) \le (1 - ||pq||)^{-1} (\mu(p) + \mu(q)). \tag{2}
$$

ii) Let us consider now the general case of $p, q \in \mathcal{M}$. Let $p_n \in \mathcal{M}$ be a sequence of finite projections, $p_n \nearrow p$ and let q_n be the orthogonal

.

projection onto $\overline{q p_n H}$. The projection q_n is finite and $p_n \vee q_n \nearrow$ $p \vee q$. The projections p_n and q_n are in the general position on the space $p_n \vee q_nH$. By (2),

$$
\mu(p \lor q) = \lim \mu(p_n \lor q_n) \le \lim (1 - ||p_n \lor q_n||)^{-1} (\mu(p_n) + \mu(q_n)) \le (1 - ||pq||)^{-1}) (\mu(p) + \mu(q)) < +\infty.
$$

Hence $p \vee q \in M_\mu$ and thus M_μ is the ideal of projections.

2) Let $\{e_n\}$ be the sequence from Proposition 1. Then $p \wedge e_n \nearrow p$, $\forall p \in A^{pr}$. If $\sup\{\mu_1(p \wedge e_n) : n\}$ $\lt \in \infty$ then $p \in \mathcal{M}_\mu$. Thus the set \mathcal{M}_μ contain any hereditary projection of finite μ -measure. By the definition, μ_1 is the closed measure.

Theorem 3. *Let* A *be a finite von Neumann algebra containing no direct summand of type* I_2 *acting in the separable Hilbert space. Then any closed measure* μ : $\mathcal{M} \rightarrow [0, +\infty]$ *can be extended to a* σ *-finite measure.*

Proof: Let $\mu : \mathcal{M} \to R$ be a closed measure. By Theorem (Matvejchuk, 1981b), any full finite measure can be extended by the strong operator topology to a unique fully finite measure on A^{pr} . Now we may assume that the measure μ is not fully finite. Put $\mu_1(p) := +\infty$ for any $p \in A^{pr} \setminus M$ and $\mu_1(p) := \mu(p)$, for any $p \in M$. $\sum p_i$ be a decomposition of $p \in A^{pr}$. By a) and by the definition of the measure, Let us prove that the function $\mu_1 : \mathcal{A}^{pr} \to [0, +\infty]$ is a σ -finite measure. Let $p =$ we have $\mu_1(p) = \sum_i \mu_1(p_i)$ for any $p \in \mathcal{M}$. Now let $p \in \mathcal{A}^{\text{pr}}\setminus\mathcal{M}$. Let us assume for the moment $\sum_i \mu_1(p_i) < +\infty$. By the finiteness of A, the assumption gives us that *p* is the projections of finite μ measure. By Proposition 1, *p* is a hereditary projection of finite μ -measure. By the condition of the Theorem, $p \in \mathcal{M}$. We have the contradiction with $p \in \mathcal{A}^{\text{pr}}\backslash \mathcal{M}$. Therefore $\sum_i \mu_1(p_i) = +\infty = \mu_1(p)$. Let $\{e_n\}$ be the sequence from Proposition 1. Hence μ_1 is a σ -finite measure. \Box

ACKNOWLEDGMENT

The research supported by the grant Min. Obrazovaniya Rossii E00-1.0-172.

REFERENCES

- Lugovaja, G. D. and Sherstnev, A. N. (1980). On the Gleasons theorem for unbounded measures. *Izvestija VUZov. Matematika*. **12**, 30–32. [in Russian].
- Matvejchuk, M. S. (1981a). Description of finite measures on semifinite algebras. *Functional Anal. i Prilozhen.* **15**(3), 41–53. [in Russian]; (1981) *English Translation: Functional Analysis and Appli cation* **15**(3), 187–197. MR# 84h:46088.
- Matvejchuk, M. S. (1981b). Finite signed measures on von Neumann algebras. In*Constructive theory of functions and functional analysis, Vol. III*, Kazan Cos. University Kazan. pp. 55–63. [in Russian], MR# 83i:46075.