Closed and σ -Finite Measures on the Orthogonal Projections

Marjan Matvejchuk¹

Received May 23, 2004; accepted May 28, 2004

We characterize the connection between closed and σ -finite measures on orthogonal projections of von Neumann algebras.

Let \mathcal{A} be a von Neumann algebra acting in a separable complex Hilbert space H and let \mathcal{A}^{pr} be the set of all orthogonal projections (=idempotents) from \mathcal{A} . A subset $\mathcal{M} \subseteq \mathcal{A}^{pr}$ is said to be *ideal of projections* if:

- a) $p \leq q$ where $p \in \mathcal{A}^{\text{pr}}, q \in \mathcal{M} \Rightarrow p \in \mathcal{M};$
- b) $p, q \in \mathcal{M}$ and $||pq|| < 1 \Rightarrow p \lor q \in \mathcal{M}$; c) $\sup\{p : p \in \mathcal{M}\} = I$.

Put $\mathcal{M}_p := \{q : q \in \mathcal{M}, q \leq p\}, \forall p \in \mathcal{A}^{\text{pr}}$. Note that \mathcal{A}^{pr} is the ideal of projections, $0 \in \mathcal{M}_p, \forall p$, and the conditions 1), 2) are fulfilled on \mathcal{M}_p .

A function $\mu : \mathcal{M} \to [0, +\infty]$ is said to be a measure if $\mu(e) = \sum \mu(e_i)$ for any representation $e = \sum e_i$. Let $\mu_1 : \mathcal{M}_1 \to [0, +\infty]$ and $\mu_2 : \mathcal{M}_2 \to [0, +\infty]$ be measures. The measure μ_2 is said to be the *continuation* of μ_1 if $\mathcal{M}_1 \subset \mathcal{M}_2$ and $\mu_1(p) = \mu_2(p), \forall p \in \mathcal{M}_1$. A projection $p \in \mathcal{A}^{\text{pr}}$ is said to be: projection of finite μ -measure if $\sup\{q \in \mathcal{M}_p\} = p$ and $\sup\{\mu(q) : q \in \mathcal{M}_p\} < +\infty$; hereditary projection of finite μ -measure if q is the projection of finite μ - measure for any $q \in \mathcal{A}^{\text{pr}}, q \leq p$.

The measure μ is said to be: *finite* if $\mu(p) < \infty$, $\forall p$; *infinite* if there exists $p \in \mathcal{M}$ such that $\mu(p) = +\infty$; *fully finite* if $\sup\{\mu(p) : p \in \mathcal{M}\} < +\infty$; *closed* if μ is finite and $p \in \mathcal{M}$ if p is the hereditary projection of finite μ -measure; σ -*finite* if $\mathcal{M} = \mathcal{A}^{\text{pr}}$ and there exists a sequence $\{p_n\} \subset \mathcal{A}^{\text{pr}}$ such that $p_n \nearrow I$ and $\mu(p_n) < +\infty$, $\forall n$.

The following Proposition will be needed in Theorem 3.

¹Novorossiisk University, Novorossiisk, Geroev Desantnikov Str., 87, 353922 Russia.

²To whom correspondence should be addressed at; e-mail: svozil@tuwien.ac.at.

Proposition 1. Let \mathcal{A} be a finite von Neumann algebra acting in the separable Hilbert space H and let $\mathcal{M} \subseteq \mathcal{A}^{pr}$ be the ideal of projections. Then there exists a sequence $\{e_n\} \subset \mathcal{M}$ such that $e_n \nearrow I$.

Proof: Let τ be a faithful normal finite trace on A^+ . The proof consists of several steps.

- i) Fix $\epsilon > 0$. Let us prove that there exists $p_{\epsilon} \in \mathcal{M}$ such that $\tau(p_{\epsilon}) > \tau(I) \epsilon$. By b) and by separability of H, there exists a sequence $\{q_n\}_1^{\infty} \subset \mathcal{M}$ with $\sup\{q_n\} = I$.
 - 1) Put $f_1 := q_1$.
 - 2) Let $q_2 f_1 q_2 = \int_0^{1+} \lambda de_{\lambda}^{(2)}$ be the spectral decomposition of $q_2 f_1 q_2$. Here $e_{\lambda}^{(2)}$ is the left continuous decomposition of identity. Fix $k \in N$. By the left continuous of $e_{\lambda}^{(2)}$, there exists $\beta \in (0, 1)$ such that $\tau(e_1^{(2)} e_{\beta}^{(2)}) < (\frac{1}{2})^{k+1}$. Put $q'_2 := q_2 \wedge e_{\beta}^{(2)}$. By 1), $q'_2 \in \mathcal{M}$. By the construction of β , $||q'_2 f_1|| \le \beta$ (< 1). Hence $f_1 \lor q'_2 \le q_1 \lor q_2$ and by b), $f_2 := f_1 \lor q'_2 \in \mathcal{M}$ and $\tau(q_1 \lor q_2 f_2) < (\frac{1}{2})^{k+1}$.
 - 3) Let $q_3 f_2 q_3 = \int_0^{1+} \lambda de_{\lambda}^{(3)}$ be the spectral decomposition of $q_3 f_2 q_3$. Let us choose $\beta \in (0, 1)$ such that $\tau(e_1^{(3)} - e_{\beta}^{(3)}) < (\frac{1}{2})^{k+2}$, again. Put $q'_3 := q_3 \wedge e_{\beta}^{(3)}$. By a), $q'_3 \in \mathcal{M}$. By the construction of β , we have $||q'_3 f_2|| \le \beta$ (< 1). Again by b), $f_3 := f_2 \lor q'_3 \in \mathcal{M}$. Thus

$$f_3 \le f_2 \lor q_3 \le f_1 \lor q_2 \lor q_3 = q_1 \lor q_2 \lor q_3$$

and

$$\begin{aligned} \tau(f_2 \lor q_3 - f_2 \lor q'_3) &\leq \left(\frac{1}{2}\right)^{k+2}, \\ &\times \tau(q_1 \lor g_2 \lor q_3 - f_2 \lor g_3) < \left(\frac{1}{2}\right)^{k+1} \end{aligned}$$

Therefore $\tau(q_1 \lor q_2 \lor q_3 - f_3) \le (\frac{1}{2})^{k+1} + (\frac{1}{2})^{k+2}$.

Let us continue the process of construction of $\{f_n\}$ by the induction with respect to n.

n). Let the projection $f_{n-1} \in \mathcal{M}$ it was chosen. Let $q_n f_{n-1}q_n = \int_0^{1+} \lambda de_{\lambda}^{(n)}$ be the spectral decomposition of $q_n f_{n-1}q_n$. Let us choose $\beta \in (0, 1)$ such that $\tau(e_1^{(n)} - e_{\beta}^{(n)}) < (\frac{1}{2})^{k+n-1}$. Put $q'_n := q_n \wedge e_{\beta}^{(n)}$. By a), $q'_n \in \mathcal{M}$. By the construction of β , we have $||q'_n f_{n-1}|| \le \beta$ (< 1). By b), $f_n := f_{n-1} \lor q'_n \in \mathcal{M}$. Thus

$$f_n = f_{n-1} \vee q'_n \leq \vee_1^{n-1} q_i \vee q_n = \vee_1^n q_i$$

and

$$\tau(\vee_1^n q_i - f_n) \le \left(\frac{1}{2}\right)^{k+1} + \dots + \left(\frac{1}{2}\right)^{k+n-1} < \left(\frac{1}{2}\right)^k$$

For the given $\epsilon > 0$ let us choose $m \in N$ such that $\tau(I - \bigvee_1^m q_i) < \frac{\epsilon}{2}$ and $k \in N$ such that $\frac{\epsilon}{2} > (\frac{1}{2})^k$ (> $\tau(\bigvee_1^m g_i - f_m)$). Then the projection $p_{\epsilon} := f_m$ is that in question.

ii) Now let $e_n := \wedge_{m \ge n} p_{2^{-m}}$. Then $e_n^{\perp} = \vee_{m \ge n} p_{2^{-m}}^{\perp}$ and $\tau(e_n^{\perp}) \le \sum_{m \ge n} 2^{-m} = 2^{-n+1}$. The sequence $\{e_n\}$ is valid.

Theorem 2. Let \mathcal{A} be a semifinite von Neumann algebra containing no direct summand of type I_2 acting in the separable Hilbert space and let $\mu : \mathcal{A}^{\text{pr}} \rightarrow [0, +\infty]$ be the σ -finite infinite measure and $\mathcal{M}_{\mu} := \{p \in \mathcal{A}^{\text{pr}} : \mu(p) < +\infty\}$. Then \mathcal{M}_{μ} is the ideal of projections. If \mathcal{A} is a finite von Neumann algebra then the restriction $\mu_1 := \mu/\mathcal{M}_{\mu}$ is the closed measure.

Proof:

1) Let us prove that \mathcal{M}_{μ} is the ideal of projections. It is clear that a) on \mathcal{M}_{μ} is fulfilled. Let $p, q \in \mathcal{M}_{\mu}$ and ||pq|| < 1. It is sufficient to consider the case p, q when p, q are projections *in general position* in H, i.e.

$$p \wedge q = (p \vee q - p) \wedge q = (p \vee q - q) \wedge p = 0.$$
⁽¹⁾

By (1), $\overline{pqH} = pH$.

i) Let us suppose first that projections p, q are finite with respect to A. There exists a representation q = q₁ + q₂ + q₃ (if A is the continuous algebra then q₃ = 0) q₁, q₂, q₃ ∈ M such that the orthogonal projections p_i onto subspaces pq_iH, i = 1, 2, 3 are mutually orthogonal and there exist the partial isometries v_i ∈ A, i = 1, 2, 3 such that q_iH are the initial subspaces and the final subspaces in (q - q_i)H. The von Neumann algebra Aⁱ generated by p_i, q_i and v_i is direct integral of factors of type I₃. By the construction, p_i, q_i, v_iq_iv^{*}_i ∈ M. By Lemma (Lugovaja and Sherstnev, 1980), μ(p_i ∨ q_i - p_i) < +∞ (and hence μ(p_i ∨ q_i) < +∞) if Aⁱ is the direct integral of factors, the proof of μ(p_i ∨ q_i) < +∞ repeat of the proof of Lemma (Lugovaja and Sherstnev, 1980). Thus the inequality μ(p ∨ q) = μ(∑_i p_i ∨ q_i) < +∞ is proved. By Lemma 5 (Matvejchuk, 1981a),

$$\mu(p \lor q) \le (1 - \|pq\|)^{-1}(\mu(p) + \mu(q)).$$
⁽²⁾

ii) Let us consider now the general case of $p, q \in \mathcal{M}$. Let $p_n \in \mathcal{M}$ be a sequence of finite projections, $p_n \nearrow p$ and let q_n be the orthogonal

projection onto $\overline{qp_nH}$. The projection q_n is finite and $p_n \lor q_n \nearrow p \lor q$. The projections p_n and q_n are in the general position on the space $p_n \lor q_n H$. By (2),

$$\mu(p \lor q) = \lim \mu(p_n \lor q_n) \le \lim (1 - \|p_n \lor q_n\|)^{-1} (\mu(p_n) + \mu(q_n)) \le (1 - \|pq\|)^{-1} (\mu(p) + \mu(q)) < +\infty.$$

Hence $p \lor q \in \mathcal{M}_{\mu}$ and thus \mathcal{M}_{μ} is the ideal of projections.

2) Let $\{e_n\}$ be the sequence from Proposition 1. Then $p \wedge e_n \nearrow p$, $\forall p \in \mathcal{A}^{\text{pr}}$. If $\sup\{\mu_1(p \wedge e_n) : n\} < +\infty$ then $p \in \mathcal{M}_{\mu}$. Thus the set \mathcal{M}_{μ} contain any hereditary projection of finite μ -measure. By the definition, μ_1 is the closed measure.

Theorem 3. Let A be a finite von Neumann algebra containing no direct summand of type I_2 acting in the separable Hilbert space. Then any closed measure μ : $\mathcal{M} \to [0, +\infty]$ can be extended to a σ -finite measure.

Proof: Let $\mu : \mathcal{M} \to R$ be a closed measure. By Theorem (Matvejchuk, 1981b), any full finite measure can be extended by the strong operator topology to a unique fully finite measure on \mathcal{A}^{pr} . Now we may assume that the measure μ is not fully finite. Put $\mu_1(p) := +\infty$ for any $p \in \mathcal{A}^{pr} \setminus \mathcal{M}$ and $\mu_1(p) := \mu(p)$, for any $p \in \mathcal{M}$. Let us prove that the function $\mu_1 : \mathcal{A}^{pr} \to [0, +\infty]$ is a σ -finite measure. Let $p = \sum p_i$ be a decomposition of $p \in \mathcal{A}^{pr}$. By a) and by the definition of the measure, we have $\mu_1(p) = \sum_i \mu_1(p_i)$ for any $p \in \mathcal{M}$. Now let $p \in \mathcal{A}^{pr} \setminus \mathcal{M}$. Let us assume for the moment $\sum_i \mu_1(p_i) < +\infty$. By the finiteness of \mathcal{A} , the assumption gives us that p is the projections of finite μ measure. By Proposition 1, p is a hereditary projection of finite μ -measure. By the condition of the Theorem, $p \in \mathcal{M}$. We have the contradiction with $p \in \mathcal{A}^{pr} \setminus \mathcal{M}$. Therefore $\sum_i \mu_1(p_i) = +\infty = \mu_1(p)$. Let $\{e_n\}$ be the sequence from Proposition 1. Hence μ_1 is a σ -finite measure. \Box

ACKNOWLEDGMENT

The research supported by the grant Min. Obrazovaniya Rossii E00-1.0-172.

REFERENCES

- Lugovaja, G. D. and Sherstnev, A. N. (1980). On the Gleasons theorem for unbounded measures. *Izvestija VUZov. Matematika.* **12**, 30–32. [in Russian].
- Matvejchuk, M. S. (1981a). Description of finite measures on semifinite algebras. Functional Anal. i Prilozhen. 15(3), 41–53. [in Russian]; (1981) English Translation: Functional Analysis and Appli cation 15(3), 187–197. MR# 84h:46088.
- Matvejchuk, M. S. (1981b). Finite signed measures on von Neumann algebras. In Constructive theory of functions and functional analysis, Vol. III, Kazan Cos. University Kazan. pp. 55–63. [in Russian], MR# 83i:46075.